| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dnegeqint-P4.13 | |||
| Description: Double Negative Equivalence Property deducible with intuitionist logic. † |
| Ref | Expression |
|---|---|
| dnegeqint-P4.13 | ⊢ (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM1of1 192 | . . 3 ⊢ (¬ ¬ ¬ 𝜑 → ¬ ¬ ¬ 𝜑) | |
| 2 | 1 | dnegeint-P4.12 421 | . 2 ⊢ (¬ ¬ ¬ 𝜑 → ¬ 𝜑) |
| 3 | dnegi-P3.29.CL 275 | . 2 ⊢ (¬ 𝜑 → ¬ ¬ ¬ 𝜑) | |
| 4 | 2, 3 | rcp-NDBII0 239 | 1 ⊢ (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: negbicancelint-P4.14 424 |
| Copyright terms: Public domain | W3C validator |