PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dnegeqint-P4.13

Theorem dnegeqint-P4.13 423
Description: Double Negative Equivalence Property deducible with intuitionist logic.
Assertion
Ref Expression
dnegeqint-P4.13 (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑)

Proof of Theorem dnegeqint-P4.13
StepHypRef Expression
1 rcp-NDASM1of1 192 . . 3 (¬ ¬ ¬ 𝜑 → ¬ ¬ ¬ 𝜑)
21dnegeint-P4.12 421 . 2 (¬ ¬ ¬ 𝜑 → ¬ 𝜑)
3 dnegi-P3.29.CL 275 . 2 𝜑 → ¬ ¬ ¬ 𝜑)
42, 3rcp-NDBII0 239 1 (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  negbicancelint-P4.14  424
  Copyright terms: Public domain W3C validator