PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dnegi-P3.29.CL

Theorem dnegi-P3.29.CL 275
Description: Closed Form of dnegi-P3.29 273.
Assertion
Ref Expression
dnegi-P3.29.CL (𝜑 → ¬ ¬ 𝜑)

Proof of Theorem dnegi-P3.29.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (𝜑𝜑)
21dnegi-P3.29 273 1 (𝜑 → ¬ ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  dnegeq-P4.10  418  dnegeqint-P4.13  423  dfexistsint-P7  960
  Copyright terms: Public domain W3C validator