PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfexistsint-P7

Theorem dfexistsint-P7 960
Description: Necessary Condition for (i.e. "If" part of) Existential Quantifier Definition.

Only this direction is deducible with intuitionist logic.

Assertion
Ref Expression
dfexistsint-P7 (∃𝑥𝜑 → ¬ ∀𝑥 ¬ 𝜑)

Proof of Theorem dfexistsint-P7
StepHypRef Expression
1 dnegi-P3.29.CL 275 . 2 (∃𝑥𝜑 → ¬ ¬ ∃𝑥𝜑)
2 allnegex-P7 958 . . . 4 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
32subneg-P3.39.RC 324 . . 3 (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ¬ ∃𝑥𝜑)
43rcp-NDBIER0 241 . 2 (¬ ¬ ∃𝑥𝜑 → ¬ ∀𝑥 ¬ 𝜑)
51, 4syl-P3.24.RC 260 1 (∃𝑥𝜑 → ¬ ∀𝑥 ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  axL6-P7  961
  Copyright terms: Public domain W3C validator