| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > cbvallv-P5 | |||
| Description: Change of Bound Variable
Law for '∀𝑥'
(variable restriction).
'𝑥' cannot occur in '𝜓' and '𝑦' cannot occur in '𝜑'. The hypothesis is fulfilled when every free occurrence of '𝑥' in '𝜑' is replaced with '𝑦', and every bound occurance of '𝑥' is replaced with a fresh variable (one for each quantifier). The resulting WFF is '𝜓'. The most general form is cbvall-P6 751. |
| Ref | Expression |
|---|---|
| cbvallv-P5.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvallv-P5 | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvallv-P5.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ndbief-P3.14 179 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 3 | 2 | cbvallv-P5-L1 658 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| 4 | 1 | ndbier-P3.15 180 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
| 5 | eqsym-P5.CL.SYM 629 | . . . 4 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 6 | 4, 5 | subiml2-P4.RC 541 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
| 7 | 6 | cbvallv-P5-L1 658 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
| 8 | 3, 7 | rcp-NDBII0 239 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: cbvexv-P5 660 specw-P5 661 example-E5.03a 665 lemma-L5.04a 667 example-E5.04a 675 genallw-P6 676 nfrall1w-P6 692 example-E6.01a 706 psubjust-P6 715 nfrterm-P6 779 |
| Copyright terms: Public domain | W3C validator |