| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > alli-P7 | |||
| Description: Simplified '∀' Introduction Law. †
For the original form, using explicit substitution, see ndalli-P7.17 842. The inference form is axGEN-P7 933. |
| Ref | Expression |
|---|---|
| alli-P7.1 | ⊢ Ⅎ𝑥𝛾 |
| alli-P7.2 | ⊢ (𝛾 → 𝜑) |
| Ref | Expression |
|---|---|
| alli-P7 | ⊢ (𝛾 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alli-P7.1 | . . 3 ⊢ Ⅎ𝑥𝛾 | |
| 2 | 1 | nfrgen-P7.CL 930 | . 2 ⊢ (𝛾 → ∀𝑥𝛾) |
| 3 | alli-P7.2 | . . . 4 ⊢ (𝛾 → 𝜑) | |
| 4 | 3 | axGEN-P7 933 | . . 3 ⊢ ∀𝑥(𝛾 → 𝜑) |
| 5 | axL4-P7 945 | . . 3 ⊢ (∀𝑥(𝛾 → 𝜑) → (∀𝑥𝛾 → ∀𝑥𝜑)) | |
| 6 | 4, 5 | rcp-NDIME0 228 | . 2 ⊢ (∀𝑥𝛾 → ∀𝑥𝜑) |
| 7 | 2, 6 | syl-P3.24.RC 260 | 1 ⊢ (𝛾 → ∀𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: alloverimex-P7.GENF 949 allnegex-P7-L2 957 dfnfreealtif-P7 964 alloverim-P7.GENF 971 qimeqallhalf-P7 975 dfpsubv-P7 977 axL11-P7 980 alli-P7r 990 alli-P7r.VR 991 allic-P7 1007 dalloverim-P7.GENF 1025 dalloverimex-P7.GENF 1036 cbvall-P7-L1 1060 nfrcond-P8 1108 |
| Copyright terms: Public domain | W3C validator |