| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrcond-P8 | |||
| Description: ENF in Antecedent ⇒ Conditionally Not Free in Consequent. †
This is actually a generalization of nfrthm-P8 1107. |
| Ref | Expression |
|---|---|
| nfrcond-P8.1 | ⊢ Ⅎ𝑥𝛾 |
| nfrcond-P8.2 | ⊢ (𝛾 → 𝜑) |
| Ref | Expression |
|---|---|
| nfrcond-P8 | ⊢ (𝛾 → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrcond-P8.1 | . . 3 ⊢ Ⅎ𝑥𝛾 | |
| 2 | nfrcond-P8.2 | . . . . 5 ⊢ (𝛾 → 𝜑) | |
| 3 | 1, 2 | alli-P7 947 | . . . 4 ⊢ (𝛾 → ∀𝑥𝜑) |
| 4 | 3 | axL1-P3.21 252 | . . 3 ⊢ (𝛾 → (𝜑 → ∀𝑥𝜑)) |
| 5 | 1, 4 | alli-P7 947 | . 2 ⊢ (𝛾 → ∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 6 | gennfrcl-P7 963 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | |
| 7 | 5, 6 | syl-P3.24.RC 260 | 1 ⊢ (𝛾 → Ⅎ𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: nfrcond-P8.VR 1109 |
| Copyright terms: Public domain | W3C validator |