PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  gennfrcl-P7

Theorem gennfrcl-P7 963
Description: General for ENF in (closed form).
Assertion
Ref Expression
gennfrcl-P7 (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)

Proof of Theorem gennfrcl-P7
StepHypRef Expression
1 ndnfrall1-P7.7 832 . . 3 𝑥𝑥𝜑
21rcp-NDIMP0addall 207 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝑥𝜑)
3 ndnfrall1-P7.7 832 . . 3 𝑥𝑥(𝜑 → ∀𝑥𝜑)
4 alle-P7.CL 942 . . . . 5 (∀𝑥𝜑𝜑)
54rcp-NDIMP0addall 207 . . . 4 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥𝜑𝜑))
6 alle-P7.CL 942 . . . 4 (∀𝑥(𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑))
75, 6ndbii-P3.13 178 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥𝜑𝜑))
83, 7ndnfrleq-P7.11 836 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → (Ⅎ𝑥𝑥𝜑 ↔ Ⅎ𝑥𝜑))
92, 8bimpf-P4 531 1 (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  dfnfreealtif-P7  964  nfrcond-P8  1108
  Copyright terms: Public domain W3C validator