| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > gennfrcl-P7 | |||
| Description: General for ⇒ ENF in (closed form). † |
| Ref | Expression |
|---|---|
| gennfrcl-P7 | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrall1-P7.7 832 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | 1 | rcp-NDIMP0addall 207 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥∀𝑥𝜑) |
| 3 | ndnfrall1-P7.7 832 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 → ∀𝑥𝜑) | |
| 4 | alle-P7.CL 942 | . . . . 5 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 5 | 4 | rcp-NDIMP0addall 207 | . . . 4 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥𝜑 → 𝜑)) |
| 6 | alle-P7.CL 942 | . . . 4 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑)) | |
| 7 | 5, 6 | ndbii-P3.13 178 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥𝜑 ↔ 𝜑)) |
| 8 | 3, 7 | ndnfrleq-P7.11 836 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (Ⅎ𝑥∀𝑥𝜑 ↔ Ⅎ𝑥𝜑)) |
| 9 | 2, 8 | bimpf-P4 531 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: dfnfreealtif-P7 964 nfrcond-P8 1108 |
| Copyright terms: Public domain | W3C validator |