PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL4-P7

Theorem axL4-P7 945
Description: ax-L4 16 Derived from Natural Deduction Rules.
Assertion
Ref Expression
axL4-P7 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem axL4-P7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ndalle-P7.18.CL 909 . . . . . 6 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
21rcp-NDIMP0addall 207 . . . . 5 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑))
3 ndnfrall1-P7.7 832 . . . . . 6 𝑥𝑥(𝜑𝜓)
4 alle-P7.CL 942 . . . . . 6 (∀𝑥(𝜑𝜓) → (𝜑𝜓))
53, 4lemma-L7.02a 944 . . . . 5 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
62, 5syl-P3.24 259 . . . 4 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → [𝑦 / 𝑥]𝜓))
76import-P3.34a.RC 306 . . 3 ((∀𝑥(𝜑𝜓) ∧ ∀𝑥𝜑) → [𝑦 / 𝑥]𝜓)
87ndalli-P7.17.VR12of2 866 . 2 ((∀𝑥(𝜑𝜓) ∧ ∀𝑥𝜑) → ∀𝑥𝜓)
98rcp-NDIMI2 224 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-forall 8  wff-imp 10  wff-and 132  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  alli-P7  947  alloverim-P7  970  qimeqalla-P7  1050
  Copyright terms: Public domain W3C validator