PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndalle-P7.18.CL

Theorem ndalle-P7.18.CL 909
Description: Closed Form of ndalle-P7.18 843.
Assertion
Ref Expression
ndalle-P7.18.CL (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑)

Proof of Theorem ndalle-P7.18.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (∀𝑥𝜑 → ∀𝑥𝜑)
21ndalle-P7.18 843 1 (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-psub-D6.2 716
This theorem is referenced by:  axL4-P7  945  cbvall-P7-L1  1060
  Copyright terms: Public domain W3C validator