| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > allic-P7 | |||
| Description: Introduce Universal
Quantifier as Consequent. †
The inference form is alli-P7r 990. |
| Ref | Expression |
|---|---|
| allic-P7.1 | ⊢ Ⅎ𝑥𝛾 |
| allic-P7.2 | ⊢ Ⅎ𝑥𝜑 |
| allic-P7.3 | ⊢ (𝛾 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| allic-P7 | ⊢ (𝛾 → (𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | allic-P7.1 | . . . 4 ⊢ Ⅎ𝑥𝛾 | |
| 2 | allic-P7.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 1, 2 | ndnfrand-P7.4.RC 877 | . . 3 ⊢ Ⅎ𝑥(𝛾 ∧ 𝜑) |
| 4 | allic-P7.3 | . . . 4 ⊢ (𝛾 → (𝜑 → 𝜓)) | |
| 5 | 4 | import-P3.34a.RC 306 | . . 3 ⊢ ((𝛾 ∧ 𝜑) → 𝜓) |
| 6 | 3, 5 | alli-P7 947 | . 2 ⊢ ((𝛾 ∧ 𝜑) → ∀𝑥𝜓) |
| 7 | 6 | rcp-NDIMI2 224 | 1 ⊢ (𝛾 → (𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∧ wff-and 132 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: allic-P7.VR1of2 1008 allic-P7.VR2of2 1009 allic-P7.VR12of2 1010 |
| Copyright terms: Public domain | W3C validator |