PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  allic-P7

Theorem allic-P7 1007
Description: Introduce Universal Quantifier as Consequent.

The inference form is alli-P7r 990.

Hypotheses
Ref Expression
allic-P7.1 𝑥𝛾
allic-P7.2 𝑥𝜑
allic-P7.3 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
allic-P7 (𝛾 → (𝜑 → ∀𝑥𝜓))

Proof of Theorem allic-P7
StepHypRef Expression
1 allic-P7.1 . . . 4 𝑥𝛾
2 allic-P7.2 . . . 4 𝑥𝜑
31, 2ndnfrand-P7.4.RC 877 . . 3 𝑥(𝛾𝜑)
4 allic-P7.3 . . . 4 (𝛾 → (𝜑𝜓))
54import-P3.34a.RC 306 . . 3 ((𝛾𝜑) → 𝜓)
63, 5alli-P7 947 . 2 ((𝛾𝜑) → ∀𝑥𝜓)
76rcp-NDIMI2 224 1 (𝛾 → (𝜑 → ∀𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-and 132  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  allic-P7.VR1of2  1008  allic-P7.VR2of2  1009  allic-P7.VR12of2  1010
  Copyright terms: Public domain W3C validator