PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  allic-P7.VR1of2

Theorem allic-P7.VR1of2 1008
Description: allic-P7 1007 with one variable restriction.

'𝑥' cannot occur in '𝛾'.

Hypotheses
Ref Expression
allic-P7.VR1of2.1 𝑥𝜑
allic-P7.VR1of2.2 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
allic-P7.VR1of2 (𝛾 → (𝜑 → ∀𝑥𝜓))
Distinct variable group:   𝛾,𝑥

Proof of Theorem allic-P7.VR1of2
StepHypRef Expression
1 ndnfrv-P7.1 826 . 2 𝑥𝛾
2 allic-P7.VR1of2.1 . 2 𝑥𝜑
3 allic-P7.VR1of2.2 . 2 (𝛾 → (𝜑𝜓))
41, 2, 3allic-P7 1007 1 (𝛾 → (𝜑 → ∀𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator