PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqallhalf-P7

Theorem qimeqallhalf-P7 975
Description: Partial Quantified Implication Equivalence Law ( ( E U ) U ).

The reverse implication is also true if '𝑥' is ENF in either '𝜑' (see qimeqalla-P7 1050) or '𝜓' (see qimeqallb-P7r 1052).

Assertion
Ref Expression
qimeqallhalf-P7 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))

Proof of Theorem qimeqallhalf-P7
StepHypRef Expression
1 ndnfrex1-P7.8 833 . . 3 𝑥𝑥𝜑
2 ndnfrall1-P7.7 832 . . 3 𝑥𝑥𝜓
31, 2ndnfrim-P7.3.RC 876 . 2 𝑥(∃𝑥𝜑 → ∀𝑥𝜓)
4 exi-P7.CL 952 . . 3 (𝜑 → ∃𝑥𝜑)
5 alle-P7.CL 942 . . 3 (∀𝑥𝜓𝜓)
64, 5imsubd-P3.28c.RC 272 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) → (𝜑𝜓))
73, 6alli-P7 947 1 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  qimeqallb-P7  976  qimeqallhalf-P7r  1049  qimeqalla-P7  1050
  Copyright terms: Public domain W3C validator