| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qimeqallb-P7 | |||
| Description: Quantified Implication Equivalence Law ( U ↔ ( E → U ) ) (non-freeness condition b). † |
| Ref | Expression |
|---|---|
| qimeqallb-P7.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| qimeqallb-P7 | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axL4ex-P7 946 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | qimeqallb-P7.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | nfrexgen-P7.CL 932 | . . . . 5 ⊢ (∃𝑥𝜓 → 𝜓) |
| 4 | 2 | nfrgen-P7.CL 930 | . . . . 5 ⊢ (𝜓 → ∀𝑥𝜓) |
| 5 | 3, 4 | syl-P3.24.RC 260 | . . . 4 ⊢ (∃𝑥𝜓 → ∀𝑥𝜓) |
| 6 | 5 | rcp-NDIMP0addall 207 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜓 → ∀𝑥𝜓)) |
| 7 | 1, 6 | syl-P3.24 259 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 8 | qimeqallhalf-P7 975 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 9 | 7, 8 | rcp-NDBII0 239 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: dfpsubv-P7 977 qimeqallb-P7r 1052 qimeqallb-P7r.VR 1053 qceximl-P8 1125 |
| Copyright terms: Public domain | W3C validator |