PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqallb-P7

Theorem qimeqallb-P7 976
Description: Quantified Implication Equivalence Law ( U ( E U ) ) (non-freeness condition b).
Hypothesis
Ref Expression
qimeqallb-P7.1 𝑥𝜓
Assertion
Ref Expression
qimeqallb-P7 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem qimeqallb-P7
StepHypRef Expression
1 axL4ex-P7 946 . . 3 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
2 qimeqallb-P7.1 . . . . . 6 𝑥𝜓
32nfrexgen-P7.CL 932 . . . . 5 (∃𝑥𝜓𝜓)
42nfrgen-P7.CL 930 . . . . 5 (𝜓 → ∀𝑥𝜓)
53, 4syl-P3.24.RC 260 . . . 4 (∃𝑥𝜓 → ∀𝑥𝜓)
65rcp-NDIMP0addall 207 . . 3 (∀𝑥(𝜑𝜓) → (∃𝑥𝜓 → ∀𝑥𝜓))
71, 6syl-P3.24 259 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))
8 qimeqallhalf-P7 975 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
97, 8rcp-NDBII0 239 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  dfpsubv-P7  977  qimeqallb-P7r  1052  qimeqallb-P7r.VR  1053  qceximl-P8  1125
  Copyright terms: Public domain W3C validator