PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqallhalf-P7r

Theorem qimeqallhalf-P7r 1049
Description: Partial Quantified Implication Equivalence Law ( ( E U ) U ).

The reverse implication is also true if '𝑥' is ENF in either '𝜑' (see qimeqalla-P7 1050) or '𝜓' (see qimeqallb-P7r 1052).

This is the restatement of a previously proven result. Do not use in proofs. Use qimeqallhalf-P7 975 instead.

Assertion
Ref Expression
qimeqallhalf-P7r ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))

Proof of Theorem qimeqallhalf-P7r
StepHypRef Expression
1 qimeqallhalf-P7 975 1 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator