PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imsubd-P3.28c.RC

Theorem imsubd-P3.28c.RC 272
Description: Inference Form of imsubd-P3.28c 271.
Hypotheses
Ref Expression
imsubd-P3.28c.RC.1 (𝜑𝜓)
imsubd-P3.28c.RC.2 (𝜒𝜗)
Assertion
Ref Expression
imsubd-P3.28c.RC ((𝜓𝜒) → (𝜑𝜗))

Proof of Theorem imsubd-P3.28c.RC
StepHypRef Expression
1 imsubd-P3.28c.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
3 imsubd-P3.28c.RC.2 . . . 4 (𝜒𝜗)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜒𝜗))
52, 4imsubd-P3.28c 271 . 2 (⊤ → ((𝜓𝜒) → (𝜑𝜗)))
65ndtruee-P3.18 183 1 ((𝜓𝜒) → (𝜑𝜗))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  nfrim-P6  689  qimeqallhalf-P7  975
  Copyright terms: Public domain W3C validator