PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  suball-P7.RC

Theorem suball-P7.RC 974
Description: Inference Form of suball-P7.RC 974.
Hypothesis
Ref Expression
suball-P7.RC.1 (𝜑𝜓)
Assertion
Ref Expression
suball-P7.RC (∀𝑥𝜑 ↔ ∀𝑥𝜓)

Proof of Theorem suball-P7.RC
StepHypRef Expression
1 ndnfrv-P7.1 826 . . 3 𝑥
2 suball-P7.RC.1 . . . 4 (𝜑𝜓)
32ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
41, 3suball-P7 973 . 2 (⊤ → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
54ndtruee-P3.18 183 1 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  dfpsub-P7  978  suball-P7r.RC  1041  exnegall-P7  1046
  Copyright terms: Public domain W3C validator