| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > suball-P7.RC | |||
| Description: Inference Form of suball-P7.RC 974. † |
| Ref | Expression |
|---|---|
| suball-P7.RC.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| suball-P7.RC | ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrv-P7.1 826 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | suball-P7.RC.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | suball-P7 973 | . 2 ⊢ (⊤ → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
| 5 | 4 | ndtruee-P3.18 183 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: dfpsub-P7 978 suball-P7r.RC 1041 exnegall-P7 1046 |
| Copyright terms: Public domain | W3C validator |