PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  suball-P7r.RC

Theorem suball-P7r.RC 1041
Description: Inference Form of suball-P7r 1039.

This is the restatement of a previously proven result. Do not use in proofs. Use suball-P7.RC 974 instead.

Hypothesis
Ref Expression
suball-P7r.RC.1 (𝜑𝜓)
Assertion
Ref Expression
suball-P7r.RC (∀𝑥𝜑 ↔ ∀𝑥𝜓)

Proof of Theorem suball-P7r.RC
StepHypRef Expression
1 suball-P7r.RC.1 . 2 (𝜑𝜓)
21suball-P7.RC 974 1 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator