PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnfrneg-P7.2

Theorem ndnfrneg-P7.2 827
Description: Natural Deduction: Effective Non-Freeness Rule 2.

If '𝑥' is (conditionally) effectively not free in '𝜑', then '𝑥' is (conditionally) effectively not free in '¬ 𝜑'.

Hypothesis
Ref Expression
ndnfrneg-P7.2.1 (𝛾 → Ⅎ𝑥𝜑)
Assertion
Ref Expression
ndnfrneg-P7.2 (𝛾 → Ⅎ𝑥 ¬ 𝜑)

Proof of Theorem ndnfrneg-P7.2
StepHypRef Expression
1 ndnfrneg-P7.2.1 . 2 (𝛾 → Ⅎ𝑥𝜑)
2 nfrneg-P6 688 . . . 4 (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)
32rcp-NDBIER0 241 . . 3 (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
43imsubr-P3.28b.RC 270 . 2 ((𝛾 → Ⅎ𝑥𝜑) → (𝛾 → Ⅎ𝑥 ¬ 𝜑))
51, 4rcp-NDIME0 228 1 (𝛾 → Ⅎ𝑥 ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-nfree-D6.1 682
This theorem is referenced by:  ndnfrneg-P7.2.RC  875  ndnfrneg-P7.2.CL  904
  Copyright terms: Public domain W3C validator