| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndnfrneg-P7.2.RC | |||
| Description: Inference Form of ndnfrneg-P7.2 827. |
| Ref | Expression |
|---|---|
| ndnfrneg-P7.2.RC.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| ndnfrneg-P7.2.RC | ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrneg-P7.2.RC.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | 2 | ndnfrneg-P7.2 827 | . 2 ⊢ (⊤ → Ⅎ𝑥 ¬ 𝜑) |
| 4 | 3 | ndtruee-P3.18 183 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 ⊤wff-true 153 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-nfree-D6.1 682 |
| This theorem is referenced by: allnegex-P7-L2 957 axL10-P7 979 qimeqex-P7-L1 1054 idempotallnall-P8 1097 idempotexnex-P8 1098 idempotallnex-P8 1099 idempotexnall-P8 1100 |
| Copyright terms: Public domain | W3C validator |