PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnfrneg-P7.2.RC

Theorem ndnfrneg-P7.2.RC 875
Description: Inference Form of ndnfrneg-P7.2 827.
Hypothesis
Ref Expression
ndnfrneg-P7.2.RC.1 𝑥𝜑
Assertion
Ref Expression
ndnfrneg-P7.2.RC 𝑥 ¬ 𝜑

Proof of Theorem ndnfrneg-P7.2.RC
StepHypRef Expression
1 ndnfrneg-P7.2.RC.1 . . . 4 𝑥𝜑
21ndtruei-P3.17 182 . . 3 (⊤ → Ⅎ𝑥𝜑)
32ndnfrneg-P7.2 827 . 2 (⊤ → Ⅎ𝑥 ¬ 𝜑)
43ndtruee-P3.18 183 1 𝑥 ¬ 𝜑
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-true 153  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-nfree-D6.1 682
This theorem is referenced by:  allnegex-P7-L2  957  axL10-P7  979  qimeqex-P7-L1  1054  idempotallnall-P8  1097  idempotexnex-P8  1098  idempotallnex-P8  1099  idempotexnall-P8  1100
  Copyright terms: Public domain W3C validator