PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  idempotexnall-P8

Theorem idempotexnall-P8 1100
Description: Idempotency Law for '𝑥' over '¬ ∀𝑥'.
Assertion
Ref Expression
idempotexnall-P8 (∃𝑥 ¬ ∀𝑥𝜑 ↔ ¬ ∀𝑥𝜑)

Proof of Theorem idempotexnall-P8
StepHypRef Expression
1 ndnfrall1-P7.7 832 . . . 4 𝑥𝑥𝜑
21ndnfrneg-P7.2.RC 875 . . 3 𝑥 ¬ ∀𝑥𝜑
32nfrexgen-P7.CL 932 . 2 (∃𝑥 ¬ ∀𝑥𝜑 → ¬ ∀𝑥𝜑)
4 exi-P7.CL 952 . 2 (¬ ∀𝑥𝜑 → ∃𝑥 ¬ ∀𝑥𝜑)
53, 4rcp-NDBII0 239 1 (∃𝑥 ¬ ∀𝑥𝜑 ↔ ¬ ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator