| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > suborr-P3.43b | |||
| Description: Right Substitution Law for '∨' . † |
| Ref | Expression |
|---|---|
| suborr-P3.43b.1 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| suborr-P3.43b | ⊢ (𝛾 → ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcomm-P3.37 319 | . . . 4 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜑 ∨ 𝜒)) | |
| 2 | 1 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝛾 → ((𝜒 ∨ 𝜑) ↔ (𝜑 ∨ 𝜒))) |
| 3 | suborr-P3.43b.1 | . . . 4 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | suborl-P3.43a 346 | . . 3 ⊢ (𝛾 → ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒))) |
| 5 | 2, 4 | bitrns-P3.33c 302 | . 2 ⊢ (𝛾 → ((𝜒 ∨ 𝜑) ↔ (𝜓 ∨ 𝜒))) |
| 6 | orcomm-P3.37 319 | . . 3 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
| 7 | 6 | rcp-NDIMP0addall 207 | . 2 ⊢ (𝛾 → ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓))) |
| 8 | 5, 7 | bitrns-P3.33c 302 | 1 ⊢ (𝛾 → ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: suborr-P3.43b.RC 349 subord-P3.43c 350 suborr2-P4 560 |
| Copyright terms: Public domain | W3C validator |