PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  suborr-P3.43b

Theorem suborr-P3.43b 348
Description: Right Substitution Law for '' .
Hypothesis
Ref Expression
suborr-P3.43b.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
suborr-P3.43b (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))

Proof of Theorem suborr-P3.43b
StepHypRef Expression
1 orcomm-P3.37 319 . . . 4 ((𝜒𝜑) ↔ (𝜑𝜒))
21rcp-NDIMP0addall 207 . . 3 (𝛾 → ((𝜒𝜑) ↔ (𝜑𝜒)))
3 suborr-P3.43b.1 . . . 4 (𝛾 → (𝜑𝜓))
43suborl-P3.43a 346 . . 3 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
52, 4bitrns-P3.33c 302 . 2 (𝛾 → ((𝜒𝜑) ↔ (𝜓𝜒)))
6 orcomm-P3.37 319 . . 3 ((𝜓𝜒) ↔ (𝜒𝜓))
76rcp-NDIMP0addall 207 . 2 (𝛾 → ((𝜓𝜒) ↔ (𝜒𝜓)))
85, 7bitrns-P3.33c 302 1 (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  suborr-P3.43b.RC  349  subord-P3.43c  350  suborr2-P4  560
  Copyright terms: Public domain W3C validator