PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  joinimandres2-P4.RC

Theorem joinimandres2-P4.RC 581
Description: Inference Form of joinimandres2-P4 580.
Hypotheses
Ref Expression
joinimandres2-P4.RC.1 (𝜑𝜓)
joinimandres2-P4.RC.2 (𝜒𝜗)
Assertion
Ref Expression
joinimandres2-P4.RC ((𝜑𝜒) → (𝜓𝜗))

Proof of Theorem joinimandres2-P4.RC
StepHypRef Expression
1 joinimandres2-P4.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
3 joinimandres2-P4.RC.2 . . . 4 (𝜒𝜗)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜒𝜗))
52, 4joinimandres2-P4 580 . 2 (⊤ → ((𝜑𝜒) → (𝜓𝜗)))
65ndtruee-P3.18 183 1 ((𝜑𝜒) → (𝜓𝜗))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  trnsvsubw-P6  710  trnsvsub-P6  763
  Copyright terms: Public domain W3C validator