PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  joinimandres3-P4

Theorem joinimandres3-P4 582
Description: Alternate form of joinimandres-P4.8b 400.
Hypotheses
Ref Expression
joinimandres3-P4.1 (𝛾 → (𝜑𝜓))
joinimandres3-P4.2 (𝛾 → (𝜑𝜒))
Assertion
Ref Expression
joinimandres3-P4 (𝛾 → (𝜑 → (𝜓𝜒)))

Proof of Theorem joinimandres3-P4
StepHypRef Expression
1 joinimandres3-P4.1 . . . 4 (𝛾 → (𝜑𝜓))
2 joinimandres3-P4.2 . . . 4 (𝛾 → (𝜑𝜒))
31, 2ndandi-P3.7 172 . . 3 (𝛾 → ((𝜑𝜓) ∧ (𝜑𝜒)))
43joinimandres-P4.8b 400 . 2 (𝛾 → ((𝜑𝜑) → (𝜓𝜒)))
5 idempotand-P4.25a 450 . . 3 ((𝜑𝜑) ↔ 𝜑)
65rcp-NDIMP0addall 207 . 2 (𝛾 → ((𝜑𝜑) ↔ 𝜑))
74, 6subiml2-P4 540 1 (𝛾 → (𝜑 → (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  joinimandres3-P4.RC  583
  Copyright terms: Public domain W3C validator