PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  joinimandres-P4.8b

Theorem joinimandres-P4.8b 400
Description: Join Two Implications Through Conjunction (Restrictive).
Hypothesis
Ref Expression
joinimandres-P4.8b.1 (𝛾 → ((𝜑𝜓) ∧ (𝜒𝜗)))
Assertion
Ref Expression
joinimandres-P4.8b (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))

Proof of Theorem joinimandres-P4.8b
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . . 5 ((𝛾 ∧ (𝜑𝜒)) → (𝜑𝜒))
21ndander-P3.9 174 . . . 4 ((𝛾 ∧ (𝜑𝜒)) → 𝜑)
3 joinimandres-P4.8b.1 . . . . . 6 (𝛾 → ((𝜑𝜓) ∧ (𝜒𝜗)))
43rcp-NDIMP1add1 208 . . . . 5 ((𝛾 ∧ (𝜑𝜒)) → ((𝜑𝜓) ∧ (𝜒𝜗)))
54ndander-P3.9 174 . . . 4 ((𝛾 ∧ (𝜑𝜒)) → (𝜑𝜓))
62, 5ndime-P3.6 171 . . 3 ((𝛾 ∧ (𝜑𝜒)) → 𝜓)
71ndandel-P3.8 173 . . . 4 ((𝛾 ∧ (𝜑𝜒)) → 𝜒)
84ndandel-P3.8 173 . . . 4 ((𝛾 ∧ (𝜑𝜒)) → (𝜒𝜗))
97, 8ndime-P3.6 171 . . 3 ((𝛾 ∧ (𝜑𝜒)) → 𝜗)
106, 9ndandi-P3.7 172 . 2 ((𝛾 ∧ (𝜑𝜒)) → (𝜓𝜗))
1110rcp-NDIMI2 224 1 (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  joinimandres-P4.8b.RC  401  joinimandres-P4.8b.CL  402  joinimandres2-P4  580  joinimandres3-P4  582
  Copyright terms: Public domain W3C validator