Proof of Theorem joinimandres-P4.8b
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM2of2 194 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → (𝜑
∧ 𝜒)) |
| 2 | 1 | ndander-P3.9 174 |
. . . 4
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → 𝜑) |
| 3 | | joinimandres-P4.8b.1 |
. . . . . 6
⊢ (𝛾 → ((𝜑 →
𝜓) ∧ (𝜒
→ 𝜗))) |
| 4 | 3 | rcp-NDIMP1add1 208 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → ((𝜑
→ 𝜓) ∧ (𝜒 → 𝜗))) |
| 5 | 4 | ndander-P3.9 174 |
. . . 4
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → (𝜑
→ 𝜓)) |
| 6 | 2, 5 | ndime-P3.6 171 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → 𝜓) |
| 7 | 1 | ndandel-P3.8 173 |
. . . 4
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → 𝜒) |
| 8 | 4 | ndandel-P3.8 173 |
. . . 4
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → (𝜒
→ 𝜗)) |
| 9 | 7, 8 | ndime-P3.6 171 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → 𝜗) |
| 10 | 6, 9 | ndandi-P3.7 172 |
. 2
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → (𝜓
∧ 𝜗)) |
| 11 | 10 | rcp-NDIMI2 224 |
1
⊢ (𝛾 → ((𝜑 ∧
𝜒) → (𝜓
∧ 𝜗))) |