PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subaddd-P5

Theorem subaddd-P5 647
Description: Dual Substitution Law for '+'.
Hypotheses
Ref Expression
subaddd-P5.1 (𝛾𝑠 = 𝑡)
subaddd-P5.2 (𝛾𝑢 = 𝑤)
Assertion
Ref Expression
subaddd-P5 (𝛾 → (𝑠 + 𝑢) = (𝑡 + 𝑤))

Proof of Theorem subaddd-P5
StepHypRef Expression
1 subaddd-P5.1 . . 3 (𝛾𝑠 = 𝑡)
21subaddl-P5 645 . 2 (𝛾 → (𝑠 + 𝑢) = (𝑡 + 𝑢))
3 subaddd-P5.2 . . 3 (𝛾𝑢 = 𝑤)
43subaddr-P5 646 . 2 (𝛾 → (𝑡 + 𝑢) = (𝑡 + 𝑤))
52, 4eqtrns-P5 630 1 (𝛾 → (𝑠 + 𝑢) = (𝑡 + 𝑤))
Colors of variables: wff objvar term class
Syntax hints:   + term-add 4   = wff-equals 6  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-addl 23  ax-L9-addr 24
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  subaddd-P5.CL  648  psubaddv-P6-L1  807
  Copyright terms: Public domain W3C validator