| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndsubaddr-P7.24c | |||
| Description: Natural Deduction: Function Substitution Rule ('+' right). |
| Ref | Expression |
|---|---|
| ndsubaddr-P7.24c.1 | ⊢ (𝛾 → 𝑡 = 𝑢) |
| Ref | Expression |
|---|---|
| ndsubaddr-P7.24c | ⊢ (𝛾 → (𝑤 + 𝑡) = (𝑤 + 𝑢)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndsubaddr-P7.24c.1 | . 2 ⊢ (𝛾 → 𝑡 = 𝑢) | |
| 2 | 1 | subaddr-P5 646 | 1 ⊢ (𝛾 → (𝑤 + 𝑡) = (𝑤 + 𝑢)) |
| Colors of variables: wff objvar term class |
| Syntax hints: + term-add 4 = wff-equals 6 → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-L9-addr 24 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: ndsubaddd-P7 858 ndsubaddr-P7.24c.RC 899 ndsubaddr-P7.24c.CL 919 |
| Copyright terms: Public domain | W3C validator |