PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubmultl-P7.24d.RC

Theorem ndsubmultl-P7.24d.RC 901
Description: Inference Form of ndsubmultl-P7.24d 854.
Hypothesis
Ref Expression
ndsubmultl-P7.24d.RC.1 𝑡 = 𝑢
Assertion
Ref Expression
ndsubmultl-P7.24d.RC (𝑡𝑤) = (𝑢𝑤)

Proof of Theorem ndsubmultl-P7.24d.RC
StepHypRef Expression
1 ndsubmultl-P7.24d.RC.1 . . . 4 𝑡 = 𝑢
21ndtruei-P3.17 182 . . 3 (⊤ → 𝑡 = 𝑢)
32ndsubmultl-P7.24d 854 . 2 (⊤ → (𝑡𝑤) = (𝑢𝑤))
43ndtruee-P3.18 183 1 (𝑡𝑤) = (𝑢𝑤)
Colors of variables: wff objvar term class
Syntax hints:  term-mult 5   = wff-equals 6  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L9-multl 25
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator