PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubmultr-P7.24e.RC

Theorem ndsubmultr-P7.24e.RC 902
Description: Inference Form of ndsubmultr-P7.24e 855.
Hypothesis
Ref Expression
ndsubmultr-P7.24e.RC.1 𝑡 = 𝑢
Assertion
Ref Expression
ndsubmultr-P7.24e.RC (𝑤𝑡) = (𝑤𝑢)

Proof of Theorem ndsubmultr-P7.24e.RC
StepHypRef Expression
1 ndsubmultr-P7.24e.RC.1 . . . 4 𝑡 = 𝑢
21ndtruei-P3.17 182 . . 3 (⊤ → 𝑡 = 𝑢)
32ndsubmultr-P7.24e 855 . 2 (⊤ → (𝑤𝑡) = (𝑤𝑢))
43ndtruee-P3.18 183 1 (𝑤𝑡) = (𝑤𝑢)
Colors of variables: wff objvar term class
Syntax hints:  term-mult 5   = wff-equals 6  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L9-multr 26
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator