PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dsyl-P3.25

Theorem dsyl-P3.25 261
Description: Double Syllogism.
Hypotheses
Ref Expression
dsyl-P3.25.1 (𝛾 → (𝜑𝜓))
dsyl-P3.25.2 (𝛾 → (𝜓𝜒))
dsyl-P3.25.3 (𝛾 → (𝜒𝜗))
Assertion
Ref Expression
dsyl-P3.25 (𝛾 → (𝜑𝜗))

Proof of Theorem dsyl-P3.25
StepHypRef Expression
1 dsyl-P3.25.1 . . 3 (𝛾 → (𝜑𝜓))
2 dsyl-P3.25.2 . . 3 (𝛾 → (𝜓𝜒))
31, 2syl-P3.24 259 . 2 (𝛾 → (𝜑𝜒))
4 dsyl-P3.25.3 . 2 (𝛾 → (𝜒𝜗))
53, 4syl-P3.24 259 1 (𝛾 → (𝜑𝜗))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  dsyl-P3.25.RC  262  tsyl-P4.15  426  qimeqallav-P5-L1  617  qimeqallbv-P5-L1  619  nfrimd-P6  815  lemma-L7.02a-L1  943  lemma-L7.02a  944  nfrnegconv-P8  1110
  Copyright terms: Public domain W3C validator