Proof of Theorem nfrimd-P6
| Step | Hyp | Ref
| Expression |
| 1 | | qimeqex-P5 612 |
. . . . 5
⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 →
∃𝑥𝜓)) |
| 2 | 1 | rcp-NDBIEF0 240 |
. . . 4
⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 →
∃𝑥𝜓)) |
| 3 | 2 | rcp-NDIMP0addall 207 |
. . 3
⊢ (𝛾 → (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 →
∃𝑥𝜓))) |
| 4 | | nfrimd-P6.1 |
. . . . 5
⊢ (𝛾 → Ⅎ𝑥𝜑) |
| 5 | | dfnfreealt-P6 683 |
. . . . 5
⊢ (Ⅎ𝑥𝜑 ↔
(∃𝑥𝜑
→ ∀𝑥𝜑)) |
| 6 | 4, 5 | subimr2-P4.RC 543 |
. . . 4
⊢ (𝛾 → (∃𝑥𝜑 →
∀𝑥𝜑)) |
| 7 | | nfrimd-P6.2 |
. . . . 5
⊢ (𝛾 → Ⅎ𝑥𝜓) |
| 8 | | dfnfreealt-P6 683 |
. . . . 5
⊢ (Ⅎ𝑥𝜓 ↔
(∃𝑥𝜓
→ ∀𝑥𝜓)) |
| 9 | 7, 8 | subimr2-P4.RC 543 |
. . . 4
⊢ (𝛾 → (∃𝑥𝜓 →
∀𝑥𝜓)) |
| 10 | 6, 9 | imsubd-P3.28c 271 |
. . 3
⊢ (𝛾 → ((∀𝑥𝜑 →
∃𝑥𝜓)
→ (∃𝑥𝜑 → ∀𝑥𝜓))) |
| 11 | | qimeqallhalf-P5 609 |
. . . 4
⊢ ((∃𝑥𝜑 →
∀𝑥𝜓)
→ ∀𝑥(𝜑 → 𝜓)) |
| 12 | 11 | rcp-NDIMP0addall 207 |
. . 3
⊢ (𝛾 → ((∃𝑥𝜑 →
∀𝑥𝜓)
→ ∀𝑥(𝜑 → 𝜓))) |
| 13 | 3, 10, 12 | dsyl-P3.25 261 |
. 2
⊢ (𝛾 → (∃𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
| 14 | | dfnfreealt-P6 683 |
. . 3
⊢ (Ⅎ𝑥(𝜑 → 𝜓) ↔ (∃𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
| 15 | 14 | bisym-P3.33b.RC 299 |
. 2
⊢ ((∃𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) ↔ Ⅎ𝑥(𝜑 → 𝜓)) |
| 16 | 13, 15 | subimr2-P4.RC 543 |
1
⊢ (𝛾 → Ⅎ𝑥(𝜑 → 𝜓)) |