PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrimd-P6

Theorem nfrimd-P6 815
Description: ENF Over Implication (deductive form).
Hypotheses
Ref Expression
nfrimd-P6.1 (𝛾 → Ⅎ𝑥𝜑)
nfrimd-P6.2 (𝛾 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrimd-P6 (𝛾 → Ⅎ𝑥(𝜑𝜓))

Proof of Theorem nfrimd-P6
StepHypRef Expression
1 qimeqex-P5 612 . . . . 5 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
21rcp-NDBIEF0 240 . . . 4 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
32rcp-NDIMP0addall 207 . . 3 (𝛾 → (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)))
4 nfrimd-P6.1 . . . . 5 (𝛾 → Ⅎ𝑥𝜑)
5 dfnfreealt-P6 683 . . . . 5 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
64, 5subimr2-P4.RC 543 . . . 4 (𝛾 → (∃𝑥𝜑 → ∀𝑥𝜑))
7 nfrimd-P6.2 . . . . 5 (𝛾 → Ⅎ𝑥𝜓)
8 dfnfreealt-P6 683 . . . . 5 (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓))
97, 8subimr2-P4.RC 543 . . . 4 (𝛾 → (∃𝑥𝜓 → ∀𝑥𝜓))
106, 9imsubd-P3.28c 271 . . 3 (𝛾 → ((∀𝑥𝜑 → ∃𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))
11 qimeqallhalf-P5 609 . . . 4 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
1211rcp-NDIMP0addall 207 . . 3 (𝛾 → ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓)))
133, 10, 12dsyl-P3.25 261 . 2 (𝛾 → (∃𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓)))
14 dfnfreealt-P6 683 . . 3 (Ⅎ𝑥(𝜑𝜓) ↔ (∃𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓)))
1514bisym-P3.33b.RC 299 . 2 ((∃𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓)) ↔ Ⅎ𝑥(𝜑𝜓))
1613, 15subimr2-P4.RC 543 1 (𝛾 → Ⅎ𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrandd-P6  816  nfrord-P6  817  nfrbid-P6  818  ndnfrim-P7.3  828
  Copyright terms: Public domain W3C validator