PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrord-P6

Theorem nfrord-P6 817
Description: ENF Over Disjunction (deductive form).
Hypotheses
Ref Expression
nfrord-P6.1 (𝛾 → Ⅎ𝑥𝜑)
nfrord-P6.2 (𝛾 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrord-P6 (𝛾 → Ⅎ𝑥(𝜑𝜓))

Proof of Theorem nfrord-P6
StepHypRef Expression
1 nfrord-P6.1 . . . 4 (𝛾 → Ⅎ𝑥𝜑)
2 nfrneg-P6 688 . . . . 5 (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)
32bisym-P3.33b.RC 299 . . . 4 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑)
41, 3subimr2-P4.RC 543 . . 3 (𝛾 → Ⅎ𝑥 ¬ 𝜑)
5 nfrord-P6.2 . . 3 (𝛾 → Ⅎ𝑥𝜓)
64, 5nfrimd-P6 815 . 2 (𝛾 → Ⅎ𝑥𝜑𝜓))
7 orasim-P3.48a 361 . . . 4 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
87nfrleq-P6 687 . . 3 (Ⅎ𝑥(𝜑𝜓) ↔ Ⅎ𝑥𝜑𝜓))
98bisym-P3.33b.RC 299 . 2 (Ⅎ𝑥𝜑𝜓) ↔ Ⅎ𝑥(𝜑𝜓))
106, 9subimr2-P4.RC 543 1 (𝛾 → Ⅎ𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-or 144  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  ndnfror-P7.5  830
  Copyright terms: Public domain W3C validator