PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrandd-P6

Theorem nfrandd-P6 816
Description: ENF Over Conjunction (deductive form).
Hypotheses
Ref Expression
nfrandd-P6.1 (𝛾 → Ⅎ𝑥𝜑)
nfrandd-P6.2 (𝛾 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrandd-P6 (𝛾 → Ⅎ𝑥(𝜑𝜓))

Proof of Theorem nfrandd-P6
StepHypRef Expression
1 nfrandd-P6.1 . . . 4 (𝛾 → Ⅎ𝑥𝜑)
2 nfrandd-P6.2 . . . . 5 (𝛾 → Ⅎ𝑥𝜓)
3 nfrneg-P6 688 . . . . . 6 (Ⅎ𝑥 ¬ 𝜓 ↔ Ⅎ𝑥𝜓)
43bisym-P3.33b.RC 299 . . . . 5 (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥 ¬ 𝜓)
52, 4subimr2-P4.RC 543 . . . 4 (𝛾 → Ⅎ𝑥 ¬ 𝜓)
61, 5nfrimd-P6 815 . . 3 (𝛾 → Ⅎ𝑥(𝜑 → ¬ 𝜓))
7 nfrneg-P6 688 . . . 4 (Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) ↔ Ⅎ𝑥(𝜑 → ¬ 𝜓))
87bisym-P3.33b.RC 299 . . 3 (Ⅎ𝑥(𝜑 → ¬ 𝜓) ↔ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓))
96, 8subimr2-P4.RC 543 . 2 (𝛾 → Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓))
10 andasim-P3.46a 356 . . . 4 ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
1110nfrleq-P6 687 . . 3 (Ⅎ𝑥(𝜑𝜓) ↔ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓))
1211bisym-P3.33b.RC 299 . 2 (Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) ↔ Ⅎ𝑥(𝜑𝜓))
139, 12subimr2-P4.RC 543 1 (𝛾 → Ⅎ𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrbid-P6  818  ndnfrand-P7.4  829
  Copyright terms: Public domain W3C validator