PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnfrand-P7.4

Theorem ndnfrand-P7.4 829
Description: Natural Deduction: Effective Non-Freeness Rule 4.

If '𝑥' is (conditionally) effectively not free in both '𝜑' and '𝜓', then '𝑥' is (conditionally) effectively not free in '(𝜑𝜓)'.

Hypotheses
Ref Expression
ndnfrand-P7.4.1 (𝛾 → Ⅎ𝑥𝜑)
ndnfrand-P7.4.2 (𝛾 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
ndnfrand-P7.4 (𝛾 → Ⅎ𝑥(𝜑𝜓))

Proof of Theorem ndnfrand-P7.4
StepHypRef Expression
1 ndnfrand-P7.4.1 . 2 (𝛾 → Ⅎ𝑥𝜑)
2 ndnfrand-P7.4.2 . 2 (𝛾 → Ⅎ𝑥𝜓)
31, 2nfrandd-P6 816 1 (𝛾 → Ⅎ𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  ndnfrand-P7.4.RC  877  ndnfrand-P7.4.CL  906
  Copyright terms: Public domain W3C validator