PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exgennfrcl-L6

Theorem exgennfrcl-L6 814
Description: Closed Form of exgennfr-P6 736.
Assertion
Ref Expression
exgennfrcl-L6 (∀𝑥(∃𝑥𝜑𝜑) → Ⅎ𝑥𝜑)

Proof of Theorem exgennfrcl-L6
StepHypRef Expression
1 lemma-L5.01a 600 . . . . 5 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
21rcp-NDBIEF0 240 . . . 4 ((∃𝑥𝜑𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
32alloverim-P5.RC.GEN 592 . . 3 (∀𝑥(∃𝑥𝜑𝜑) → ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
4 gennfrcl-L6 812 . . 3 (∀𝑥𝜑 → ∀𝑥 ¬ 𝜑) → Ⅎ𝑥 ¬ 𝜑)
53, 4syl-P3.24.RC 260 . 2 (∀𝑥(∃𝑥𝜑𝜑) → Ⅎ𝑥 ¬ 𝜑)
6 nfrneg-P6 688 . 2 (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)
75, 6subimr2-P4.RC 543 1 (∀𝑥(∃𝑥𝜑𝜑) → Ⅎ𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L10 27
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrex2d-P6  820
  Copyright terms: Public domain W3C validator