| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > exgennfrcl-L6 | |||
| Description: Closed Form of exgennfr-P6 736. |
| Ref | Expression |
|---|---|
| exgennfrcl-L6 | ⊢ (∀𝑥(∃𝑥𝜑 → 𝜑) → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemma-L5.01a 600 | . . . . 5 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 2 | 1 | rcp-NDBIEF0 240 | . . . 4 ⊢ ((∃𝑥𝜑 → 𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
| 3 | 2 | alloverim-P5.RC.GEN 592 | . . 3 ⊢ (∀𝑥(∃𝑥𝜑 → 𝜑) → ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
| 4 | gennfrcl-L6 812 | . . 3 ⊢ (∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑) → Ⅎ𝑥 ¬ 𝜑) | |
| 5 | 3, 4 | syl-P3.24.RC 260 | . 2 ⊢ (∀𝑥(∃𝑥𝜑 → 𝜑) → Ⅎ𝑥 ¬ 𝜑) |
| 6 | nfrneg-P6 688 | . 2 ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑) | |
| 7 | 5, 6 | subimr2-P4.RC 543 | 1 ⊢ (∀𝑥(∃𝑥𝜑 → 𝜑) → Ⅎ𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L10 27 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: nfrex2d-P6 820 |
| Copyright terms: Public domain | W3C validator |