| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrex2d-P6 | |||
| Description: ENF Over Existential Quantifier (different variable - deductive form). |
| Ref | Expression |
|---|---|
| nfrex2d-P6.1 | ⊢ Ⅎ𝑥𝛾 |
| nfrex2d-P6.2 | ⊢ Ⅎ𝑦𝛾 |
| nfrex2d-P6.3 | ⊢ (𝛾 → Ⅎ𝑥𝜑) |
| Ref | Expression |
|---|---|
| nfrex2d-P6 | ⊢ (𝛾 → Ⅎ𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrex2d-P6.1 | . . 3 ⊢ Ⅎ𝑥𝛾 | |
| 2 | nfrex2d-P6.2 | . . . . 5 ⊢ Ⅎ𝑦𝛾 | |
| 3 | nfrex2d-P6.3 | . . . . . 6 ⊢ (𝛾 → Ⅎ𝑥𝜑) | |
| 4 | nfrexgencl-L6 813 | . . . . . 6 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) | |
| 5 | 3, 4 | syl-P3.24.RC 260 | . . . . 5 ⊢ (𝛾 → (∃𝑥𝜑 → 𝜑)) |
| 6 | 2, 5 | alloverimex-P5.GENF 748 | . . . 4 ⊢ (𝛾 → (∃𝑦∃𝑥𝜑 → ∃𝑦𝜑)) |
| 7 | excomm-P6 740 | . . . . 5 ⊢ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) | |
| 8 | 7 | subiml-P3.40a.RC 326 | . . . 4 ⊢ ((∃𝑦∃𝑥𝜑 → ∃𝑦𝜑) ↔ (∃𝑥∃𝑦𝜑 → ∃𝑦𝜑)) |
| 9 | 6, 8 | subimr2-P4.RC 543 | . . 3 ⊢ (𝛾 → (∃𝑥∃𝑦𝜑 → ∃𝑦𝜑)) |
| 10 | 1, 9 | allic-P6 745 | . 2 ⊢ (𝛾 → ∀𝑥(∃𝑥∃𝑦𝜑 → ∃𝑦𝜑)) |
| 11 | exgennfrcl-L6 814 | . 2 ⊢ (∀𝑥(∃𝑥∃𝑦𝜑 → ∃𝑦𝜑) → Ⅎ𝑥∃𝑦𝜑) | |
| 12 | 10, 11 | syl-P3.24.RC 260 | 1 ⊢ (𝛾 → Ⅎ𝑥∃𝑦𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: ndnfrex2-P7.10 835 |
| Copyright terms: Public domain | W3C validator |