| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > gennfrcl-L6 | |||
| Description: Closed Form of gennfr-P6 734. |
| Ref | Expression |
|---|---|
| gennfrcl-L6 | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alloverimex-P5.CL 604 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∃𝑥∀𝑥𝜑)) | |
| 2 | exgenall-P6 732 | . . . 4 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | |
| 3 | 2 | rcp-NDIMP0addall 207 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑)) |
| 4 | 1, 3 | syl-P3.24 259 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 5 | dfnfreealt-P6 683 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 6 | 5 | bisym-P3.33b.RC 299 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ Ⅎ𝑥𝜑) |
| 7 | 4, 6 | subimr2-P4.RC 543 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L10 27 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: exgennfrcl-L6 814 nfrall2d-P6 819 |
| Copyright terms: Public domain | W3C validator |