PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  gennfrcl-L6

Theorem gennfrcl-L6 812
Description: Closed Form of gennfr-P6 734.
Assertion
Ref Expression
gennfrcl-L6 (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)

Proof of Theorem gennfrcl-L6
StepHypRef Expression
1 alloverimex-P5.CL 604 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∃𝑥𝑥𝜑))
2 exgenall-P6 732 . . . 4 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
32rcp-NDIMP0addall 207 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝑥𝜑 → ∀𝑥𝜑))
41, 3syl-P3.24 259 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∀𝑥𝜑))
5 dfnfreealt-P6 683 . . 3 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
65bisym-P3.33b.RC 299 . 2 ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ Ⅎ𝑥𝜑)
74, 6subimr2-P4.RC 543 1 (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L10 27
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  exgennfrcl-L6  814  nfrall2d-P6  819
  Copyright terms: Public domain W3C validator