| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrgencl-L6 | |||
| Description: Closed Form of nfrgen-P6 733. |
| Ref | Expression |
|---|---|
| nfrgencl-L6 | ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exi-P6 718 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 2 | 1 | rcp-NDIMP0addall 207 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∃𝑥𝜑)) |
| 3 | dfnfreealt-P6 683 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 4 | 3 | rcp-NDBIEF0 240 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 5 | 2, 4 | syl-P3.24 259 | 1 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: nfrexgencl-L6 813 nfrall2d-P6 819 |
| Copyright terms: Public domain | W3C validator |