PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrgencl-L6

Theorem nfrgencl-L6 811
Description: Closed Form of nfrgen-P6 733.
Assertion
Ref Expression
nfrgencl-L6 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))

Proof of Theorem nfrgencl-L6
StepHypRef Expression
1 exi-P6 718 . . 3 (𝜑 → ∃𝑥𝜑)
21rcp-NDIMP0addall 207 . 2 (Ⅎ𝑥𝜑 → (𝜑 → ∃𝑥𝜑))
3 dfnfreealt-P6 683 . . 3 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
43rcp-NDBIEF0 240 . 2 (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
52, 4syl-P3.24 259 1 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrexgencl-L6  813  nfrall2d-P6  819
  Copyright terms: Public domain W3C validator