PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfnfreealt-P7

Theorem dfnfreealt-P7 967
Description: dfnfreealt-P6 683 Derived from Natural Deduction Rules.
Assertion
Ref Expression
dfnfreealt-P7 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))

Proof of Theorem dfnfreealt-P7
StepHypRef Expression
1 dfnfreealtonlyif-P7 966 . 2 (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
2 dfnfreealtif-P7 964 . 2 ((∃𝑥𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
31, 2rcp-NDBII0 239 1 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  dfnfree-P7  968
  Copyright terms: Public domain W3C validator