PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imsubl-P3.28a.RC

Theorem imsubl-P3.28a.RC 268
Description: Inference Form of imsubl-P3.28a 267.
Hypothesis
Ref Expression
imsubl-P3.28a.RC.1 (𝜑𝜓)
Assertion
Ref Expression
imsubl-P3.28a.RC ((𝜓𝜒) → (𝜑𝜒))

Proof of Theorem imsubl-P3.28a.RC
StepHypRef Expression
1 imsubl-P3.28a.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32imsubl-P3.28a 267 . 2 (⊤ → ((𝜓𝜒) → (𝜑𝜒)))
43ndtruee-P3.18 183 1 ((𝜓𝜒) → (𝜑𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  dfnfreealtif-P7  964
  Copyright terms: Public domain W3C validator