| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dalloverim-P5.RC | |||
| Description: Inference Form of dalloverim-P5 590. |
| Ref | Expression |
|---|---|
| dalloverim-P5.RC.1 | ⊢ ∀𝑥(𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| dalloverim-P5.RC | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalloverim-P5.RC.1 | . . . 4 ⊢ ∀𝑥(𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → ∀𝑥(𝜑 → (𝜓 → 𝜒))) |
| 3 | 2 | dalloverim-P5 590 | . 2 ⊢ (⊤ → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) |
| 4 | 3 | ndtruee-P3.18 183 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: dalloverim-P5.RC.GEN 593 |
| Copyright terms: Public domain | W3C validator |