PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dalloverim-P5.RC

Theorem dalloverim-P5.RC 591
Description: Inference Form of dalloverim-P5 590.
Hypothesis
Ref Expression
dalloverim-P5.RC.1 𝑥(𝜑 → (𝜓𝜒))
Assertion
Ref Expression
dalloverim-P5.RC (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))

Proof of Theorem dalloverim-P5.RC
StepHypRef Expression
1 dalloverim-P5.RC.1 . . . 4 𝑥(𝜑 → (𝜓𝜒))
21ndtruei-P3.17 182 . . 3 (⊤ → ∀𝑥(𝜑 → (𝜓𝜒)))
32dalloverim-P5 590 . 2 (⊤ → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
43ndtruee-P3.18 183 1 (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  dalloverim-P5.RC.GEN  593
  Copyright terms: Public domain W3C validator