PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dalloverim-P5.RC.GEN

Theorem dalloverim-P5.RC.GEN 593
Description: Inference Form of dalloverim-P5 590 with generalization.
Hypothesis
Ref Expression
dalloverim-P5.RC.GEN.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
dalloverim-P5.RC.GEN (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))

Proof of Theorem dalloverim-P5.RC.GEN
StepHypRef Expression
1 dalloverim-P5.RC.GEN.1 . . 3 (𝜑 → (𝜓𝜒))
21ax-GEN 15 . 2 𝑥(𝜑 → (𝜓𝜒))
32dalloverim-P5.RC 591 1 (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  psubim-P6-L1  789
  Copyright terms: Public domain W3C validator