| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > genex-P6 | |||
| Description: The WFF '∃𝑥𝜑' is General For '𝑥'.
See genexw-P6 677 for a version that requires only FOL axioms. |
| Ref | Expression |
|---|---|
| genex-P6 | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gennall-P6 730 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | df-exists-D5.1 596 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 3 | 2 | bisym-P3.33b.RC 299 | . . 3 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ∃𝑥𝜑) |
| 4 | 3 | suballinf-P5 594 | . . 3 ⊢ (∀𝑥 ¬ ∀𝑥 ¬ 𝜑 ↔ ∀𝑥∃𝑥𝜑) |
| 5 | 3, 4 | subimd-P3.40c.RC 330 | . 2 ⊢ ((¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑) ↔ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑)) |
| 6 | 1, 5 | bimpf-P4.RC 532 | 1 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L10 27 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-exists-D5.1 596 |
| This theorem is referenced by: nfrex1-P6 742 |
| Copyright terms: Public domain | W3C validator |