PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  genex-P6

Theorem genex-P6 731
Description: The WFF '𝑥𝜑' is General For '𝑥'.

See genexw-P6 677 for a version that requires only FOL axioms.

Assertion
Ref Expression
genex-P6 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem genex-P6
StepHypRef Expression
1 gennall-P6 730 . 2 (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑)
2 df-exists-D5.1 596 . . . 4 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
32bisym-P3.33b.RC 299 . . 3 (¬ ∀𝑥 ¬ 𝜑 ↔ ∃𝑥𝜑)
43suballinf-P5 594 . . 3 (∀𝑥 ¬ ∀𝑥 ¬ 𝜑 ↔ ∀𝑥𝑥𝜑)
53, 4subimd-P3.40c.RC 330 . 2 ((¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝑥𝜑))
61, 5bimpf-P4.RC 532 1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L10 27
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-exists-D5.1 596
This theorem is referenced by:  nfrex1-P6  742
  Copyright terms: Public domain W3C validator