PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  norer-P4.2b

Theorem norer-P4.2b 370
Description: Negated Right '' Elimination.
Hypothesis
Ref Expression
norer-P4.2b.1 (𝛾 → ¬ (𝜑𝜓))
Assertion
Ref Expression
norer-P4.2b (𝛾 → ¬ 𝜑)

Proof of Theorem norer-P4.2b
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 ((𝛾𝜑) → 𝜑)
21ndorir-P3.11 176 . 2 ((𝛾𝜑) → (𝜑𝜓))
3 norer-P4.2b.1 . . 3 (𝛾 → ¬ (𝜑𝜓))
43rcp-NDIMP1add1 208 . 2 ((𝛾𝜑) → ¬ (𝜑𝜓))
52, 4rcp-NDNEGI2 219 1 (𝛾 → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145
This theorem is referenced by:  norer-P4.2b.RC  371  norer-P4.2b.CL  372
  Copyright terms: Public domain W3C validator