PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dmorgafwd-L4.1

Theorem dmorgafwd-L4.1 452
Description: De Morgan's Law A: Forward Implication Lemma.
Assertion
Ref Expression
dmorgafwd-L4.1 (¬ (𝜑𝜓) → (¬ 𝜑 ∧ ¬ 𝜓))

Proof of Theorem dmorgafwd-L4.1
StepHypRef Expression
1 norer-P4.2b.CL 372 . 2 (¬ (𝜑𝜓) → ¬ 𝜑)
2 norel-P4.2a.CL 369 . 2 (¬ (𝜑𝜓) → ¬ 𝜓)
31, 2ndandi-P3.7 172 1 (¬ (𝜑𝜓) → (¬ 𝜑 ∧ ¬ 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  dmorga-P4.26a  456
  Copyright terms: Public domain W3C validator