PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  idempotor-P4.25b

Theorem idempotor-P4.25b 451
Description: Idempotency Law for ''.
Assertion
Ref Expression
idempotor-P4.25b ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem idempotor-P4.25b
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 (((𝜑𝜑) ∧ 𝜑) → 𝜑)
2 rcp-NDASM1of1 192 . . 3 ((𝜑𝜑) → (𝜑𝜑))
31, 1, 2rcp-NDORE2 235 . 2 ((𝜑𝜑) → 𝜑)
4 ndoril-P3.10.CL 245 . 2 (𝜑 → (𝜑𝜑))
53, 4rcp-NDBII0 239 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  oroverim-P4.28-L1  465  rimoverand-P4.31-L1  480  rimoveror-P4.31b  482  truthtbltort-P4.38a  503  joinimandinc3-P4  578  joinimor2-P4  584
  Copyright terms: Public domain W3C validator