| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > idempotor-P4.25b | |||
| Description: Idempotency Law for '∨'. † |
| Ref | Expression |
|---|---|
| idempotor-P4.25b | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . . 3 ⊢ (((𝜑 ∨ 𝜑) ∧ 𝜑) → 𝜑) | |
| 2 | rcp-NDASM1of1 192 | . . 3 ⊢ ((𝜑 ∨ 𝜑) → (𝜑 ∨ 𝜑)) | |
| 3 | 1, 1, 2 | rcp-NDORE2 235 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) |
| 4 | ndoril-P3.10.CL 245 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
| 5 | 3, 4 | rcp-NDBII0 239 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 |
| This theorem is referenced by: oroverim-P4.28-L1 465 rimoverand-P4.31-L1 480 rimoveror-P4.31b 482 truthtbltort-P4.38a 503 joinimandinc3-P4 578 joinimor2-P4 584 |
| Copyright terms: Public domain | W3C validator |