PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  orasim-P3.48-L1

Theorem orasim-P3.48-L1 359
Description: Lemma for orasim-P3.48a 361 and orasimint-P3.48b 362.
Assertion
Ref Expression
orasim-P3.48-L1 ((𝜑𝜓) → (¬ 𝜑𝜓))

Proof of Theorem orasim-P3.48-L1
StepHypRef Expression
1 rcp-NDASM3of3 197 . . . 4 (((𝜑𝜓) ∧ ¬ 𝜑𝜑) → 𝜑)
2 rcp-NDASM2of3 196 . . . 4 (((𝜑𝜓) ∧ ¬ 𝜑𝜑) → ¬ 𝜑)
31, 2ndnege-P3.4 169 . . 3 (((𝜑𝜓) ∧ ¬ 𝜑𝜑) → 𝜓)
4 rcp-NDASM3of3 197 . . 3 (((𝜑𝜓) ∧ ¬ 𝜑𝜓) → 𝜓)
5 rcp-NDASM1of2 193 . . 3 (((𝜑𝜓) ∧ ¬ 𝜑) → (𝜑𝜓))
63, 4, 5rcp-NDORE3 236 . 2 (((𝜑𝜓) ∧ ¬ 𝜑) → 𝜓)
76rcp-NDIMI2 224 1 ((𝜑𝜓) → (¬ 𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-or 144  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  orasim-P3.48a  361  orasimint-P3.48b  362
  Copyright terms: Public domain W3C validator