| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > orasim-P3.48-L1 | |||
| Description: Lemma for orasim-P3.48a 361 and orasimint-P3.48b 362. † |
| Ref | Expression |
|---|---|
| orasim-P3.48-L1 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM3of3 197 | . . . 4 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ 𝜑 ∧ 𝜑) → 𝜑) | |
| 2 | rcp-NDASM2of3 196 | . . . 4 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ 𝜑 ∧ 𝜑) → ¬ 𝜑) | |
| 3 | 1, 2 | ndnege-P3.4 169 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ 𝜑 ∧ 𝜑) → 𝜓) |
| 4 | rcp-NDASM3of3 197 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ 𝜑 ∧ 𝜓) → 𝜓) | |
| 5 | rcp-NDASM1of2 193 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ 𝜑) → (𝜑 ∨ 𝜓)) | |
| 6 | 3, 4, 5 | rcp-NDORE3 236 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ 𝜑) → 𝜓) |
| 7 | 6 | rcp-NDIMI2 224 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∨ wff-or 144 ∧ wff-rcp-AND3 160 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: orasim-P3.48a 361 orasimint-P3.48b 362 |
| Copyright terms: Public domain | W3C validator |