| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > profelimr-P4.5b | |||
| Description: Process of Elimination (right). † |
| Ref | Expression |
|---|---|
| profelimr-P4.5b.1 | ⊢ (𝛾 → (𝜑 ∨ 𝜓)) |
| profelimr-P4.5b.2 | ⊢ (𝛾 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| profelimr-P4.5b | ⊢ (𝛾 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . 2 ⊢ ((𝛾 ∧ 𝜑) → 𝜑) | |
| 2 | rcp-NDASM2of2 194 | . . 3 ⊢ ((𝛾 ∧ 𝜓) → 𝜓) | |
| 3 | profelimr-P4.5b.2 | . . . 4 ⊢ (𝛾 → ¬ 𝜓) | |
| 4 | 3 | rcp-NDIMP1add1 208 | . . 3 ⊢ ((𝛾 ∧ 𝜓) → ¬ 𝜓) |
| 5 | 2, 4 | ndnege-P3.4 169 | . 2 ⊢ ((𝛾 ∧ 𝜓) → 𝜑) |
| 6 | profelimr-P4.5b.1 | . 2 ⊢ (𝛾 → (𝜑 ∨ 𝜓)) | |
| 7 | 1, 5, 6 | rcp-NDORE2 235 | 1 ⊢ (𝛾 → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 |
| This theorem is referenced by: profelimr-P4.5b.RC 388 falseprofelimr-P4.7b 395 |
| Copyright terms: Public domain | W3C validator |