PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  profelimr-P4.5b

Theorem profelimr-P4.5b 387
Description: Process of Elimination (right).
Hypotheses
Ref Expression
profelimr-P4.5b.1 (𝛾 → (𝜑𝜓))
profelimr-P4.5b.2 (𝛾 → ¬ 𝜓)
Assertion
Ref Expression
profelimr-P4.5b (𝛾𝜑)

Proof of Theorem profelimr-P4.5b
StepHypRef Expression
1 rcp-NDASM2of2 194 . 2 ((𝛾𝜑) → 𝜑)
2 rcp-NDASM2of2 194 . . 3 ((𝛾𝜓) → 𝜓)
3 profelimr-P4.5b.2 . . . 4 (𝛾 → ¬ 𝜓)
43rcp-NDIMP1add1 208 . . 3 ((𝛾𝜓) → ¬ 𝜓)
52, 4ndnege-P3.4 169 . 2 ((𝛾𝜓) → 𝜑)
6 profelimr-P4.5b.1 . 2 (𝛾 → (𝜑𝜓))
71, 5, 6rcp-NDORE2 235 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145
This theorem is referenced by:  profelimr-P4.5b.RC  388  falseprofelimr-P4.7b  395
  Copyright terms: Public domain W3C validator