PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  profelimr-P4.5b.RC

Theorem profelimr-P4.5b.RC 388
Description: Inference Form of profelimr-P4.5b 387.
Hypotheses
Ref Expression
profelimr-P4.5b.RC.1 (𝜑𝜓)
profelimr-P4.5b.RC.2 ¬ 𝜓
Assertion
Ref Expression
profelimr-P4.5b.RC 𝜑

Proof of Theorem profelimr-P4.5b.RC
StepHypRef Expression
1 profelimr-P4.5b.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
3 profelimr-P4.5b.RC.2 . . . 4 ¬ 𝜓
43ndtruei-P3.17 182 . . 3 (⊤ → ¬ 𝜓)
52, 4profelimr-P4.5b 387 . 2 (⊤ → 𝜑)
65ndtruee-P3.18 183 1 𝜑
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-or 144  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator