PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nprofeliml-P4.6a

Theorem nprofeliml-P4.6a 389
Description: Negated Process of Elimination (left).
Hypotheses
Ref Expression
nprofeliml-P4.6a.1 (𝛾 → ¬ (𝜑𝜓))
nprofeliml-P4.6a.2 (𝛾𝜑)
Assertion
Ref Expression
nprofeliml-P4.6a (𝛾 → ¬ 𝜓)

Proof of Theorem nprofeliml-P4.6a
StepHypRef Expression
1 nprofeliml-P4.6a.2 . . . 4 (𝛾𝜑)
21rcp-NDIMP1add1 208 . . 3 ((𝛾𝜓) → 𝜑)
3 rcp-NDASM2of2 194 . . 3 ((𝛾𝜓) → 𝜓)
42, 3ndandi-P3.7 172 . 2 ((𝛾𝜓) → (𝜑𝜓))
5 nprofeliml-P4.6a.1 . . 3 (𝛾 → ¬ (𝜑𝜓))
65rcp-NDIMP1add1 208 . 2 ((𝛾𝜓) → ¬ (𝜑𝜓))
74, 6rcp-NDNEGI2 219 1 (𝛾 → ¬ 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  nprofeliml-P4.6a.RC  390  sepimandl-P4.9d  415
  Copyright terms: Public domain W3C validator