PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nprofeliml-P4.6a.RC

Theorem nprofeliml-P4.6a.RC 390
Description: Inference Form of nprofeliml-P4.6a 389.
Hypotheses
Ref Expression
nprofeliml-P4.6a.RC.1 ¬ (𝜑𝜓)
nprofeliml-P4.6a.RC.2 𝜑
Assertion
Ref Expression
nprofeliml-P4.6a.RC ¬ 𝜓

Proof of Theorem nprofeliml-P4.6a.RC
StepHypRef Expression
1 nprofeliml-P4.6a.RC.1 . . . 4 ¬ (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → ¬ (𝜑𝜓))
3 nprofeliml-P4.6a.RC.2 . . . 4 𝜑
43ndtruei-P3.17 182 . . 3 (⊤ → 𝜑)
52, 4nprofeliml-P4.6a 389 . 2 (⊤ → ¬ 𝜓)
65ndtruee-P3.18 183 1 ¬ 𝜓
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator